भारतीय सूचना प्रौद्योगिकीअभिकल्पना एवं विनिर्माण संस्थान , कर्नूल INDIAN INSTITUTE OF INFORMATION TECHNOLOGY DESIGN AND MANUFACTURING KURNOOL

Jagannathagattu, Dinnedevarapadu, Kurnool - 518008, Andhra Pradesh, India (An Institute of National Importance under MoE, Govt. of India)

Syllabus for *Minor Specialization* for B.Tech. (From AY 2022-23)

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, DESIGN AND MANUFACTURING, KURNOOL July, 2022

Scheme/Structure for Minor Specializations for B.Tech. Offered by the Department of Mechanical Engineering

Minor Specialization in **<u>Robotics and Automation</u>** (open to all Departments students)

	Robotics and Automation					
S. No.	Course Code	Course Name	SEM	Ι	Р	С
1	MEM101	Introduction to Robotics and Automation	3	3	0	3
2	MEM102	Robot Kinematics and Dynamics	4	3	0	3
3	NPTEL	NPTEL course related to Robotics and Automation	5	3	0	3
4	MEM103	Robotics: Motion Planning and Control	5	3	0	3
5	MEM104	Robotics and Intelligent Automation Lab	6	1	3	3
			Total			15

Course Title	Introduction to Robotics and Automation	Course Number	MEM101	
Department	Mechanical Engineering	Structure (IPC)	3-0-3	
Offered to	Minor: Robotics and Automation	Status	NA	
D		(Core/ Elective)	1.1. 2022	
Prerequisite	NIL	Effective from	July 2022	
Course Objective	To introduce the concepts of robotics and automation along with various types of robotics systems and automation that are in use in the industry like robot arms, mobile robots.			
	wheeled robotics, flying systems etc.			
Course	The students will be able to:			
Outcomes	 Understand now the robotics systems works in the real-world Identify various robotics system that exists currently 			
	3. Understand how the automation is important in the modern industrial environments			
	Analyze the given industrial environment identify suitable robotic and automation			
	 Systems Conceptual Design for various industrial 	ns ptual Design for various industrial situations		
Contents of the course	1. Introduction and Overview of Robotics and Automation: Foundations of Robot and its Control systems, Components of the robotics; Basic Elements of Automation.			
	2. Configuration Space: Degrees of fr magnetic vacuum cup and other types selection and design; Brief on Motion A	onfiguration Space: Degrees of freedom, end effectors: mechanical gripper, agnetic vacuum cup and other types of grippers, general consideration on gripper election and design; Brief on Motion Analysis and Manipulator kinematics;		
	3. Types of Robots : Classification By Kinematics; Stationary Robots, Legged Flying Robots; Nano Robots; Collaborat	ypes of Robots : Classification By Applications, By Coordination System, By inematics; Stationary Robots, Legged Robots, Wheeled Robots, Swimming Robots, lying Robots; Nano Robots; Collaborative Robots;		
	4. Introduction to Industrial Automation and Control : Principles and strategies of automation; Architecture of Industrial Automation Systems; Advanced automation functions, Levels of automations, Automated flow lines and transfer mechanisms, Analysis of transfer lines without storage, Automated flow lines with storage buffers.			
	5. Material handling and identification technologies -Overview of material systems, Types of material handling equipment, Design of the system system, Automated guided vehicle system, Automated storage systems, handling and storage with manufacturing, OPC-UA for Machine-Communication.			
	6. Robotics and Automation in Industry various Industries like Manufacturing, M industry etc.	Applications of Robotic Iedical, Healthcare, Dom	s and Automation in nestic, Defense, Food	
7. Overview on Artificial Intellige Automation		and Computer Vision	n in Robotics and	
Textbooks	 S. B. Niku, "Introduction to Robotics: Analysis, Control, Applications," John Wiley & Sons, Inc., 2011. John J. Craig, "Introduction to Robotics Mechanics and Control," Pearson Education. 			
	Inc., 2005.	Mechanics and Control,	rearson Education,	
References	1. K. S. Fu, R. C. Gonzalez and C. S. G. I Intelligence," McGraw-Hill, 1987.	Lee, "Robotics: Control,	Sensing, Vision and	

Course Title	Robot Kinematics and Dynamics	Course Number	MEM102	
Department	Mechanical Engineering	Structure (IPC) 3-0-3		
Offered to	Minor: Robotics and Automation	Status	NA	
		(Core/ Elective)		
Prerequisite	NIL	Effective from	July 2022	
Course	1. To study the mechanisms and kinematics of robot manipulators.			
Objective	2. To study the dynamics of robots of various forms like robot arms, mobile robots etc.			
Course Outcomes	 The students will be able to: Understand the motion and dynamics of rigid bodies. Understand the forward and inverse kinematics of robot manipulators. Understand the forward and inverse dynamics of robot manipulators. Analyze the joint velocities/accelerations and forces/torques. 			
Contents of	of 1. Rigid-body motions and twists.			
the course	Rotations and angular velocities			
	Homogenous transformation matrices			
	Twists			
	2. Formulation of forward and inverse kinematics.			
	• Forward kinematics in space frame and end-effector frame			
	Analytical and numerical inverse kinematics			
	3. Velocity kinematics and statics.			
	Manipulator Jacobian			
	Kelationship between space and Statics of open chains	a body Jacobian		
	 Statics of open chains Singularity, analysis 			
	Singularity analysis Dynamics of open chain robot manipulators			
	Lagrangian formulation			
	 Dynamics of single rigid body 			
	• Newton-Euler inverse dynamics			
	• Dynamic of open chains			
	Constrained dynamics			
	5. Robot dynamics.			
	Numerical algorithms for forward and inverse dynamics			
	6. Robot trajectory generation under dynamic constraints.			
	7. Kinematics and Dynamics of Wheeled Robots, Drones and Swimming Robots.			
Textbooks	1. John J. Craig, "Introduction to Robotics Mechanics and Control," Pearson			
	Education, Inc., 2005.			
	 K. M. Lynch and F. C. Park, "Modern Robotics: Mechanics, Planning and Control," Cambridge U. Press, 2017. 			
References	es 1. K.S. Fu, R. C. Gonzalez and C. S. G. Lee, "Robotics: Control, Sensing, Vision and			
	 Intelligence," McGraw-Hill, 1987. S. B. Niku, "Introduction to Robotics: Analysis, Control, Applications," John Wiley & Sons, Inc., 2011. 			

Course Title	Robotics: Motion Planning and Control	Course Number	MEM103	
Department	Mechanical Engineering	Structure (IPC)	3-0-3	
Offered to	Minor: Robotics and Automation	Status (Core/ Elective)	NA	
Prerequisite	NIL	Effective from	July 2022	
Course Objective	To plan robot motion and feedback control in presence of obstacles.			
Course Outcomes	 The students will be able to: 1. Analyse and control the robot motion. 2. Understand trajectory planning. 3. Analyse robot grasping and other manipulation tasks. 4. Understand feedback control of wheeled mobile robots. 5. Do robot programming for trajectory planning and feedback control. 			
Contents of the course	 Classical and modern motion planning techniques. Grid methods Sampling methods Virtual potential fields Robot motion and force control. Control system overview Motion control with velocity, torque or force inputs Force control Hybrid motion-force control Grasping and Manipulation Contact kinematics Contact forces and friction Manipulation Nonholonomic wheeled mobile robots. Modeling Motion planning Feedback control of omnidirectional wheeled mobile robots. Modeling Motion planning 			
Textbooks	 K. M. Lynch and F. C. Park, "Modern Robotics: Mechanics, Planning and Control," Cambridge U. Press, 2017. John J. Craig, "Introduction to Robotics Mechanics and Control," Pearson Education, Inc., 2005. 			
References	 S. B. Niku, "Introduction to Robotics: Analysis, Control, Applications," John Wiley & Sons, Inc., 2011. K.S. Fu, R. C. Gonzalez and C. S. G. Lee, "Robotics: Control, Sensing, Vision and Intelligence," McGraw-Hill, 1987. 			

Course Title	Robotics and Intelligent	Course Number	MEM104		
Donartmont	Automation Lab Mechanical Engineering	Structure (IDC)	122		
Offered to	Minor Polotics and Automation	Structure (IPC)	1-3-3 NA		
Offered to	WINOF. Robotics and Automation	(Core/ Flective)	INA		
Prerequisite	NIL	Effective from	July 2022		
Course Objective	To inculcate specialized knowledge	and skill in robotics	and automation using the		
	principles and methods of engineering analysis and design.				
Course Outcomes	 The students will be able to: Identify the suitable Controller for a given Robot types. Perform analysis of mobility and DoF. Select the best suitable combination of actuator and sensors for a given requirements. Understand requirements to model or build a robotic manipulator. 				
Contents of the course	 Advantages, functions, components, operation and applications of industrial robots and end effectors; the function, operation, storage and retrieval of robot programs and position points; the use, function and operation of on-line programming, off-line programming, Teach pendants, operator stations, and digital inputs and outputs for industrial robots. Use a PC and robot programming software for various operations. Use the Cartesian coordinate system to command robot position and program is the Weald Cartesian coordinate system to command robot position. 				
	 Connect, configure, program an driven and non-servo-driven co 	 Connect, configure, program and operate a robot in conjunction with both servo- driven and non-servo-driven conveyors. 			
	4. Use robot simulation software t	. Use robot simulation software to design a work-cell.			
	5. Use PLC Open motion function blocks to implement a synchronized multi-ax motion application.				
	6. Troubleshoot a multi-axis motion system.				
	7. Robot Simulation using Gazebo	and ROS.			
Textbooks	 John J. Craig, "Introduction to Robotics Mechanics and Control," Pearson Education, Inc., 2005. K. M. Lynch and F. C. Park, "Modern Robotics: Mechanics Planning and 				
	Control," Cambridge U. Press, 2017.				
References	 Editor: Maki K. Habib, Advanced Robotics and Intelligent Automation in Manufacturing. United States: IGI Global, 2019. Altman, Roy. Intelligent Automation: Rules, Relationships and Robots. N.p.: FUTURE STRATEGIES Incorporated, 2019. 				
	 3. Robotics Technology and Flexible Automation. India: McGraw-Hill Educatio (India) Pvt Limited, 2010. 4. <u>https://www.ros.org/</u> 5. <u>http://www.roboanalyzer.com/</u> (developed by IIT Delhi) 				